

Parametric versus nonparametric statistical tests

Parametric tests make assumptions about the distribution of the data, but nonparametric tests do not.

Parametric tests

The appropriate use of parametric tests requires two key *assumptions* to be made about the data:

- The data are normally distributed
- There is homogeneity of variance (i.e. equal variance across groups)

Parametric tests offer the following *advantages*:

- Higher statistical power
- Efficient with large sample sizes
- Direct interpretation of the parameter estimates
- Use of quantitative data

Parametric tests have the following *disadvantages*:

- The above assumptions need to be made
- May be sensitive to outliers
- Do not work well with some types of data, such as ordinal or categorical data

Common parametric tests for different data types

- Independent samples *t*-test: compares two independent groups
- Paired samples *t*-test: compares two sets of dependent observations or measurements
- Analysis of variance (one-way ANOVA): compares three or more independent groups
- Pearson correlation coefficient (*r*): estimates the linear association between two quantitative variables

In parametric tests, information about the distribution of the study population is known.

Nonparametric tests

Nonparametric tests offer the following *advantages*:

- No assumptions need to be made about the data
- Flexible to different data types, such as ordinal or categorical data
- Robust to outliers
- Can be used with small sample sizes

Nonparametric tests have the following *disadvantages*:

- Less powerful when parametric assumptions are met
- Less precise because they are based on ranks
- May be harder to interpret because they are based on ranks

Common nonparametric tests for different data types

- Mann–Whitney *U* test: compares two independent groups.
- Wilcoxon signed rank test: compares two dependent groups
- Kruskal–Wallis test: compares three or more independent groups.
- Spearman's rank correlation (rho): estimates monotonal association between two quantitative variables
- Chi-square test: compares two independent categorical variables
- McNemar test: compares two paired/matched dichotomous variables

In nonparametric tests, information about the distribution of the study population is unknown.

Further information

Statistics How To https://www.statisticshowto.com/

BMJ. Statistics notes https://www.bmj.com/specialties/statistics-notes